

Design Documentation

Targoora Park Integrated Water Management Treatment Plant Clarkes Lane Project

July 22, 2024

DRAFT V1

Submitted to North East Water Authority.

Clarkes Lane Process Description

Please review with the file Clarkes Lane Bioreactor Calculations and the P&ID.

Assumptions

ADWF including sewer mining from Wenham's Lane	300,000 L/d
PWWF	525,000 L/d
Peak diural flow (dry)	9.4 L/s
Peak diural flow (wet)	12 L/s
Plant design basis on all systems, peak flow of	12 L/s
Aerobic tank volume	352 kL
Volume between high/high and low levels	37 kL
Volume between high and low levels	10 kL

Pump Station Operation

During the night the plant will have treated waste water with little or no flow entering the plant. This will have lowered the aerobic tank level to between low level and high level (LT302).

Waste water will be collected in the Clarkes Lane and Wehnam Lane pump stations. All of the flow to the Clarkes Lane pump station will be pumped to the plant at 8 L/s, which is the capacity of the pump.

If the level in the aerobic tank level is below high/high level and the Clarkes Lane pump is not running, the Wenham Lane pump station will pump to the plant at 11 L/s. If the pump station is full (indicated by LT102) and the conditions for acceptance of waste at the plant at not met, the waste water will be pumped to sewer (AV101 closed). It is expected that 80% of the flow to the Wenham Rd pump station will be delivered to the treatment plant and 20% will be pumped to sewer. This can be increased to 100% by installing an additional level switch in the pump station to create high and high/high status in the Wenham Lane pump station.

Screening and pumping

Waste water is pumped directly through the inlet screens. Under normal operation both screens will be functioning. The capacity can be handled by one screen in case of failure of the other. The screens are fitted with inlet tanks and level switches (LSH201/202). When the level rises to high level the screen auger rotation and washing is activated. The washed screening are delivered to 240L bins fitted with plastic hoods to enclose the washed screenings.

The screened water will flow to a subsurface tank wet well with an operational volume of approximately 1000L. This wet well has low (0%), high (50%) and high/high (90%) level transmission (LT203). There is also a 100% high/high to shut the process.

When the level in the wet well increases to high the sump pump (P201/202) will start at a flow rate matching the expected incoming flow, being 8L/s or 11L/s, depending in the pump station in operation. These pumps are on VSD controllers. This will continue until the level reaches low, when

the pumps will stop. There will be small difference in the incoming flow and the sump pump flow. If the level in the subsurface tank increases to high/high the sump pump flow will increase to 12L/s. These flows are measured with a magnetic flow meter (FT101) on the sump pump discharge.

Should LT203 reach 100% (H/H/H) it is assumed that overflow is imminent. Flow from Clarkes Lane will be diverted to the Wenhams Lane manhole pit and any flow from Wenhams Lane will be diverted to sewer.

MBR Operation

Flow from the wet well and the RAS both enter the bioselector at the top. This flow goes directly to the from the bioselector into the bottom of the anoxic tank. The anoxic tank is agitated with a submersible mixer (MIX301).

The anoxic tank overflows to the aerobic tank.

The mixer is a submersible rail mounted devise which can be accessed from the walkway. A dry spare is provided.

Sodium hydroxide solution is dosed in the Anoxic tank based on the pH in the aerobic tank. Dosing only operates when the sump pumps (P201/2) are operating.

Alum is dosed into the overflow between the anoxic and aerobic tanks at a rate determined by operator to control Total Phosphorus. This is flow paced to the flow indicated by FIT202 and only while pumps P201/2 are operating. This is likely to be different for periods when the water is being used for irrigation or when it is being discharged to One Mile Creek.

Aeration is through 2 sets of ceramic aeration disks. These operate in parallel. Each can operate independently during periods of service on one of them. These can be removed for service. Each is capable of providing sufficient aeration with the other out of service.

Aeration is provided by AB301/2 operating on VSD control and duty/standby. The aeration is controlled to give period of aeration and anoxic conditions in the aerobic tank to improve denitrification. This may change during period of irrigation and creek discharge.

Temperature (TT301) and MLSS (AT301) are measured in the aerobic tank for operator information.

The membrane feed pumps or Return Activated Sludge Pumps (P301/2) operate continuously. When the aerobic tank is low and the membranes are at F_0 , these operate at minimum speed of 30% from the VSD. This is prevent sludge settling in the membrane tanks an to ensure there is a flow of RAS entering the bioselector.

Membrane Operation

The operation of the membranes is determined by the level in the aerobic tank (LT302). At low level the membranes will be at F_0 , effectively not flowing. The permeate pumps will be stopped and there will be no aeration. Every 20 minutes each membrane will have its blower turned on for 1 minute to prevent solids settling within the membrane bundle.

When the level in the aerobic tank increases to high, one membrane train operate at F_{opt} , being 6L/s flow and a flux of 30 LMH. Each membrane train will operate for 20 minutes before swapping to the

next train in sequence. When the level increases to high/high, which is expected only during high diurnal flow periods, all 3 membrane trains will operator to produce a flow of 12L/s at a flux of 20 LMH. That is 4L/s for each train.

While the membrane permeate pumps are running the blowers for that membrane train will operate. The blowers product 0.1Nm³/hr of air for a total flow of 70Nm³/hr for each train.

The membrane feed pumps will operate at 30% while one membrane train is in operation and this will increase to 100% when all trains are operating.

While in operation the membranes will backwash by reversing the flow through pumps P303/4/5. These are rotary lobe pumps on VSD controllers and can operate in forward flow and reverse flow direction. Each train will backwash at a flux of 30 LMH, giving a backwash flow of 6L/s. The membranes backwash for 30 seconds each backwash cycle. The backwash frequency is every 5 minutes. This results in an overall forward flow, allowing for ramping times, of more than 80%.

Water is collected in a permeate tank to facilitate volumes need for backwash, CIP and to ensure a constant flow through the UV and chlorine contact tank.

CIP

Daily maintenance cleaning is carried out on the membranes. This is done daily with sodium hypochlorite. At 2am, if the aerobic tank is at low level, the maintenance clean will be carried out one train at a time. The pump associated with the membrane train will start in the reverse flow direction at a reverse flux of 6 LMH (flow of 1.2L/s). Into this stream sodium hypochlorite is dosed to give 120ppm of free chlorine. Sodium hypochlorite (12.5%) is dosed at 4L/hr into this stream and this continues for 20 minutes. The membrane aeration is turned off at this stage. After 20 minutes the next membrane is cleaned until all have been completed.

Once a week (determine by results on site) a citric acid clean can be undertaken. This process is the same as hypochlorite clean with 50% citric acid dosed at 4L/hr to give a concentration of 500ppm.

The spent solution is returned to the biomass.

Once every 6 months the membranes will require a recovery clean. This is carried out by draining the membrane tank in question and fill it with permeate in the reverse flow direction at 1.2L/s dosing 8 L/hr of hypo solution. Once filled, another 15 L of hypo is added. This is allowed to soak with the aeration cycle running in CIP mode for 12 hours.

WAS

Waste Activated Sludge (WAS) is drawn from the overflow launder on the membrane tank. This is to give the highest concentration of WAS. To maintain 20 days sludge age, 7500L of WAS at 12g/L needs to be wasted. This will be done in 3 lots of 2500L at 7am, 12 noon and 5 pm. The time is selected to ensure that there is a high flow in the sewer and the retention time is minimised. The WAS is directed to the gravity sewer manhole. After each discharge a volume of recycled water is discharged to ensure that the flow is not held in the sewer. This will be in the order of 5000L.

Chlorine Contact Tank

The chlorine contact tank is design to give 60 mins residence time. The tank is baffled to give a factor of 0.3. The chlorine is dosed to give a residual of 0.1 ppm to 1 ppm. This will give a log removal of more than the required 4 log for this process. Sodium Hypochlorite will be dosed at a rate to give 5ppm of chlorine before the contact tank. This will be between 900mL and 1800mL/hr depending on the flow rate. This will be trimmed to give 0.5 to 1 ppm at the tank outlet. At startup this function will be disabled for a period of time to give the tank time stabilise.

The UV is an in-pipe pressure system designed to give 1.5 log virus removal at a flow rate of 12L/s. The UV feed pumps (P401/2) will operate between 20% and 100% level in the permeate tank (LT401). They will come on at 50% and operate at 6L/min. They will stop at 20% leaving enough volume for the membranes to continue operating. At 75% tank level they will increase to 12L/s. The

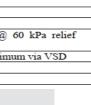
UV system incorporates UV transmittance and UV dose transmitters and alarms.

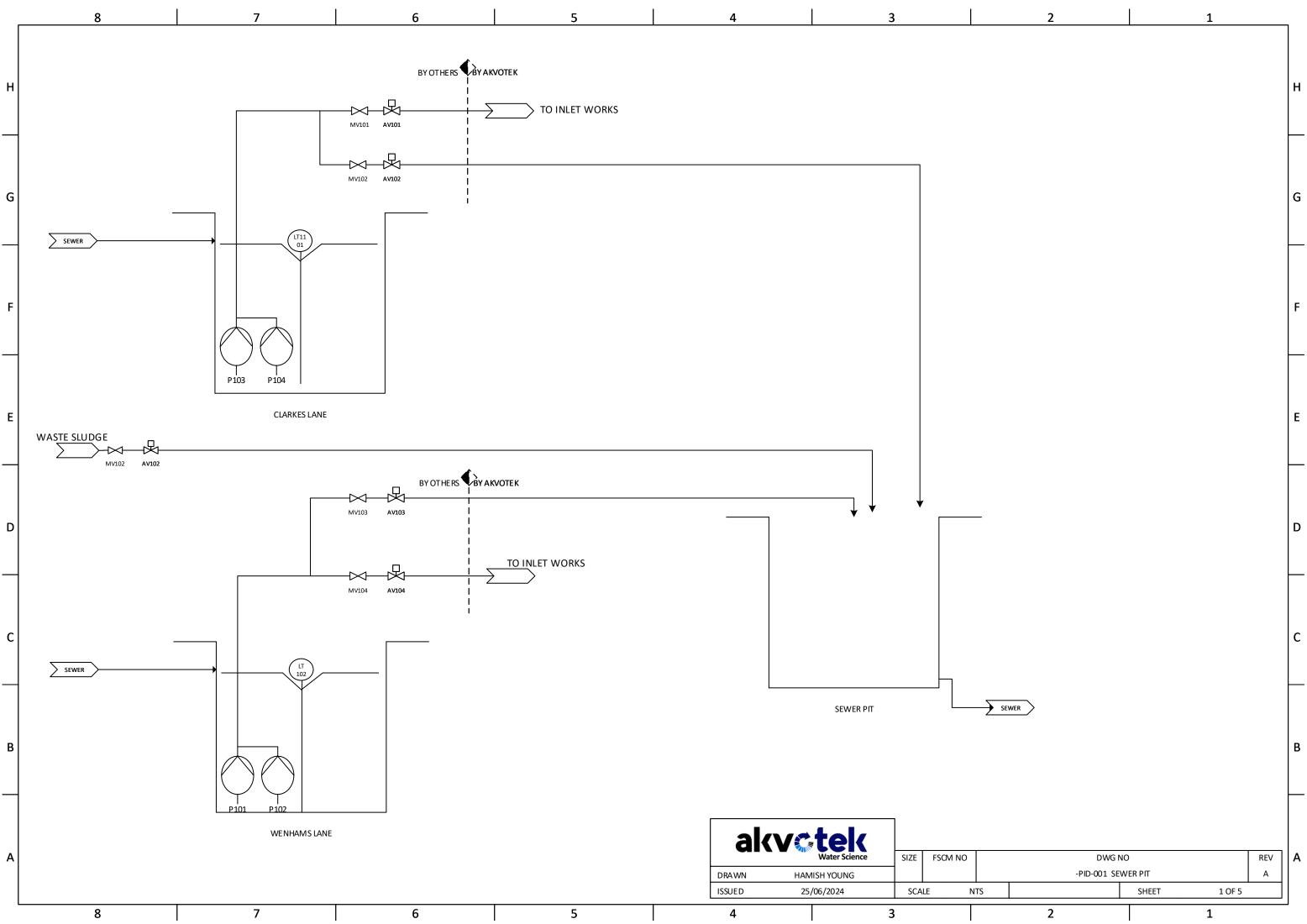
Recycle Water

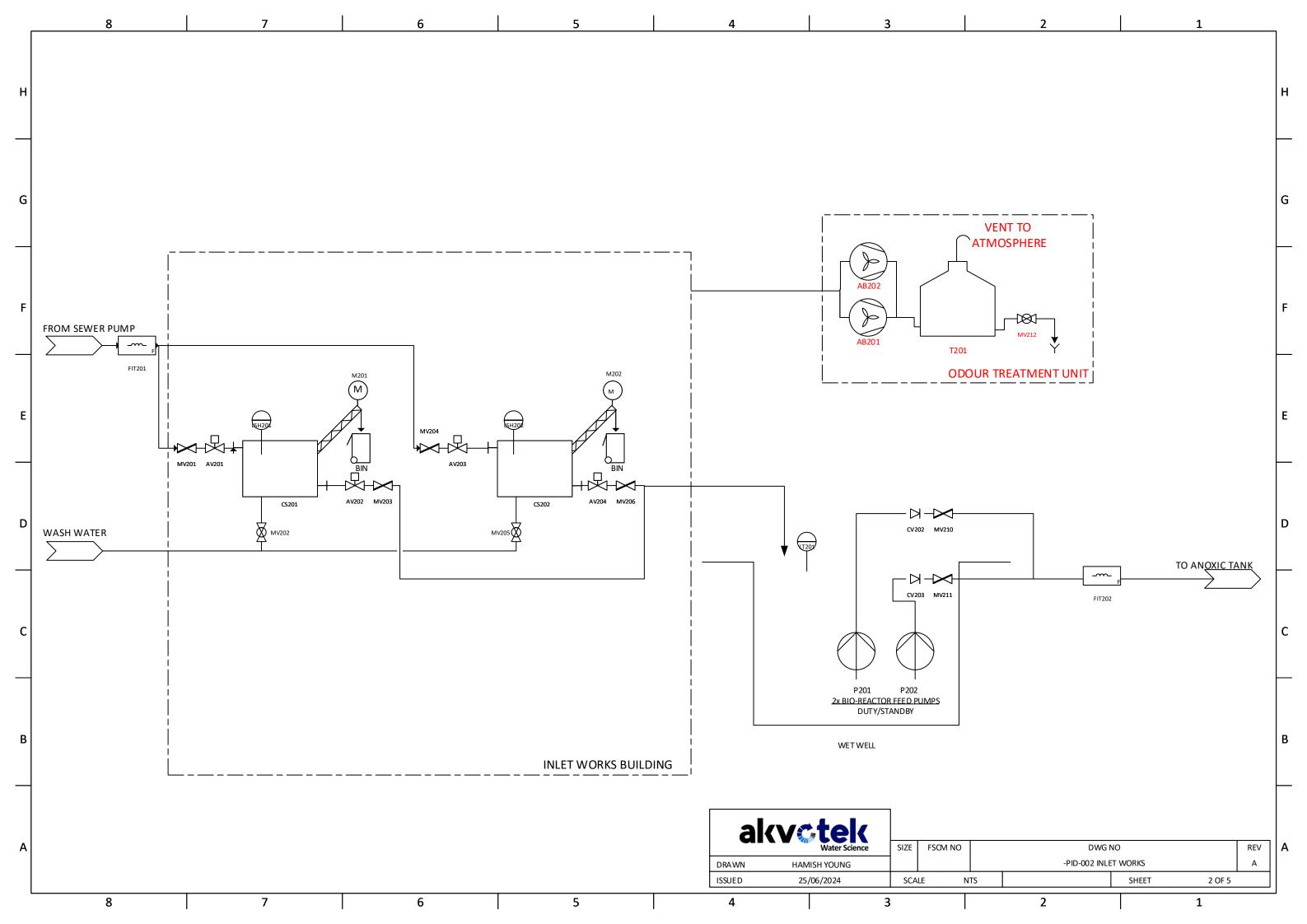
Recycled water, for use around the site and screening washing, will be supplied from this line via a pressure pump system at 500 kPa.

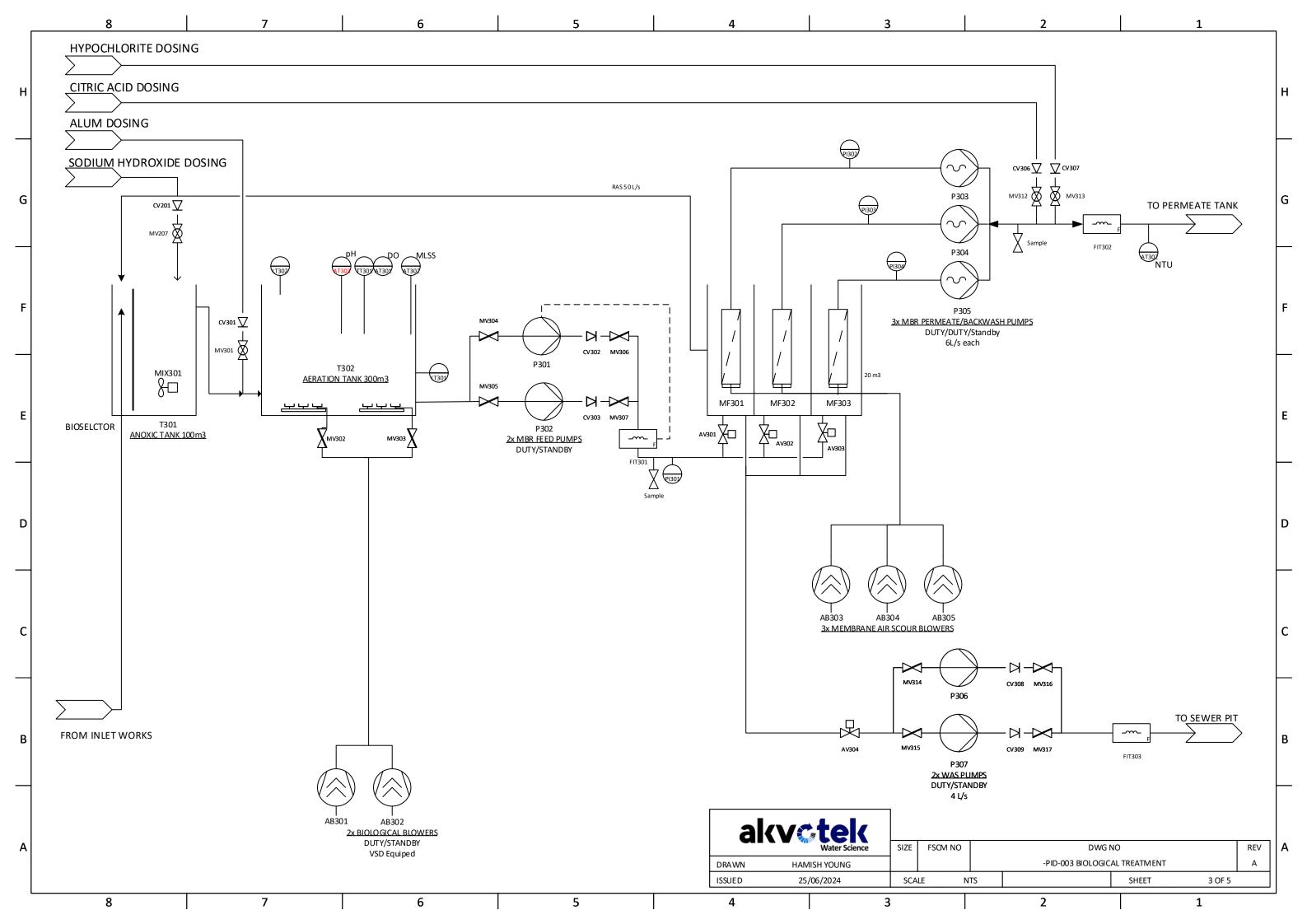
υv

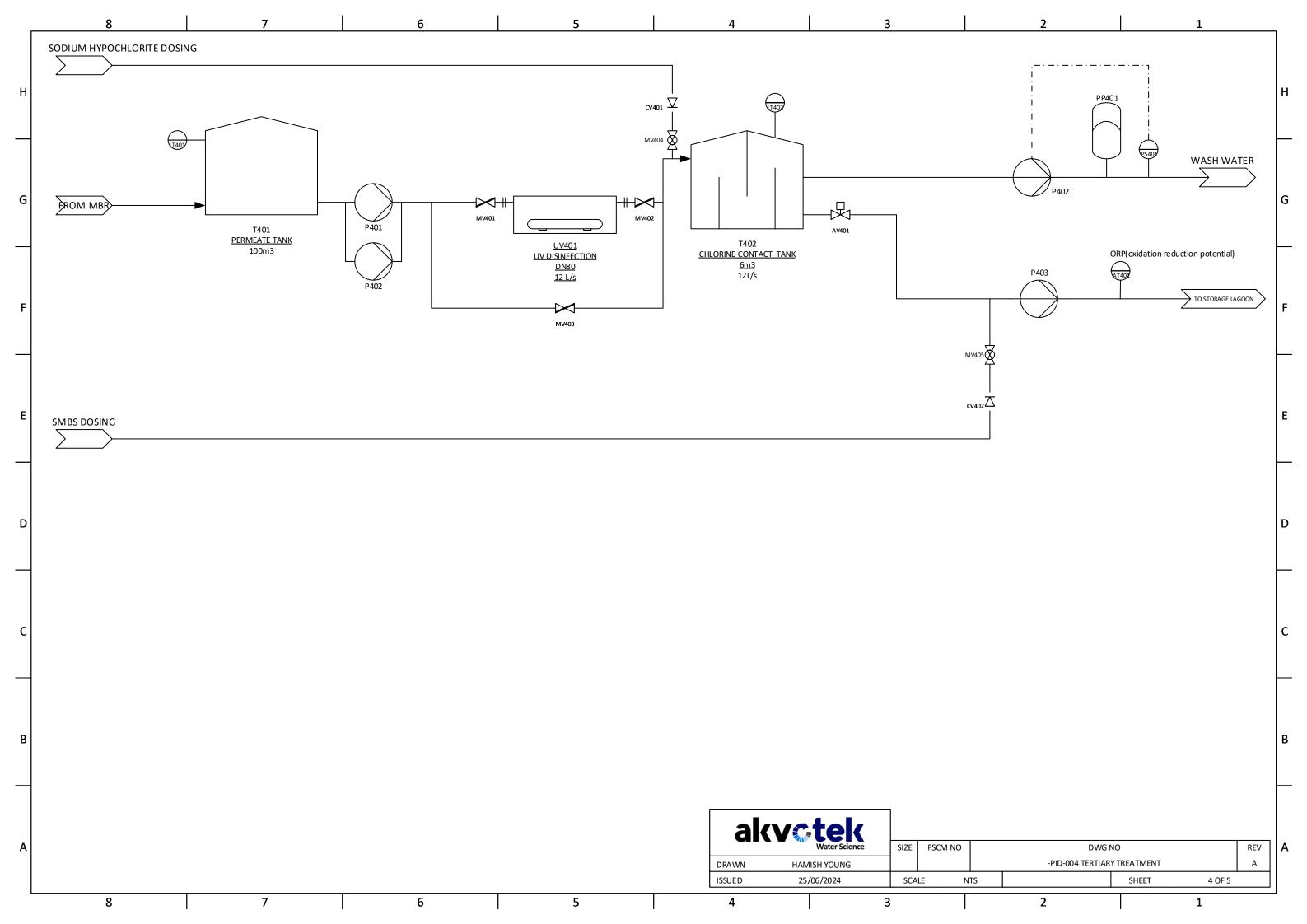
	Clarkes Lane MBR	Revisio	n	Created: HY	Checked:					
Calculation	BIOREACTOR COMPUTATION CHECK Quantity	Symbol	Unit	Date: DRAFT Value Typ./Rec. Range	Source/formula/Comment	77-1-1- 0 077	P MBR Design Wa	atomaton Cl	montanist'	
Influent c	haracterisation	Symbol	Unit	value Typ./Rec. Range	Source/formula/comment	Table 2 : ST	P MBR Design Wa	astewater Cha	racteristics	
muente	Instantaneous peak flow	Qmax	m3/hr	43.2	12 L/s design		Parameter	Des	ign 50%ile	Design 90%ile
-	peak capacity	Q	m3/d	400	[1]1.2.2 PWWF				centration	Concentration
	design BOD	BOD	mg/L	350	[1]Table 2. 90%ile		Alkalinity (m			300
	-	TKN	mg/L					<i>v</i> /	-	
	design TKN	INN	-	65	[1]Table 2. 90%ile, assumed all N as TKN		BOD (mg/L)			350
)	BOD load		kg/d	140	=Q*BOD		TSS (mg/L)			300
	TKN Load		kg/d	26	=Q*TKN		NH ₃ -N (mg/	/		50
8	Influent TSS	TSS	mg/L	300	[1]Table 2. 90%ile		TN (mg/L)	52		65
9	Influent VSS	VSS	mg/L	225	Assumed 90%ile. Based on typical ratio TSS/VSS domestic wastew	ater	TP (mg/L)	9.	5	12.1
	Design winter water temp	Tmin	°C	10	[1]1.5.2			I		
						Table 7: MB	R Design Summa	ry		
						Par	ameter		Desig	m
							selector No. cham	here	1	çii
							selector width	locis	0.5 m	
		Air					selector length		2.5 m	
		· +	Efflu	ent			al bioselector vol		0.5 m	
		╶╢┌┻╗┍┻╗╶╽	-							
	Primary						selector overflow	barries	2.5 m	
	effluent Anoxic Aerobic					Bio	reactor basins		1 and	
									1 aer	
							kimum Top Water		3.8 m	
							imum Bottom W	ater Level	2.8 m	
	Return activated sludge					Bas	in Width			noxic
		*								erobic
	(b) \	Vaste sludg	je			Bio	reactor Basin volu	ume (both)		anoxic
1 Membran							-	-		n3 aerobic
2	Sustainable design flux		L/(m2*h)	20			mbrane tank recyc	ele rate	30 L/	sec
3	Membrane standby factor		-, (1.5	D/D/S => 1.5	MB	R chambers		3	
, 1	Required membrane area	Δ	- m2	2160		No.	Membrane casset		3	
	•	A _{m,req}			2*Dulaian F1C-700-2*2	SRT	Г	Table 3 :	Freated Efflue	nt Quality Requiremen
5	Installed membrane area	$A_{m,des}$	m2	2100	3*Pulsion LE16=700m2*3			-		
5								Parameter		90%ile
7								Turbidity (N	TU)	<2 (100%ile)
	tank sizing, nitrification rate limiting								/	
	effluent NH4 concentration	S _{NH}	mg/L	1	[1]Table 3 max			pH		6.5 - 8.0
)	aeration tank DO	So	mg/L	2 2-4	2 recommended min. [1]1.6.6 states 0.5-2.0			-		
L	nitrification max specific growth rate @ Tmin	$\mu_{max,AOB,Tm}$	nin g/(g*d)	0.449049954	= (0.90 g/(g*d))(1.072) ^(Tmin-20) , [2]Table 8-14			Colour (Haz	en units)	<15
	specific decay rate coefficient	b _{AOB}	g/(g*d)	0.127730665	= (0.17 g/(g*d))(1.029) ^(Tmin-20) , [2]Table 8-14	[c_][c	1	DOD (//	`	-10
3	nitrification specific growth rate, adjusted	μ _{AOB}	g/(g*d)	0.111762643	[2] Eq. (7–94)	$\mu_{AOB} = \mu_{max,AOB} \left \frac{S_{NH_4}}{S_{NH_4} + K_{NH_4}} \right \left \frac{S_o}{S_o + K_o} \right $	h	BOD ₅ (mg/I	.)	<10
, 1	theoretical min Solids Retention Time	SRT _{min}	d	8.947533533	[2] Eq. 7-98, SRT=1/μ _{AOB}	$\mu_{AOB} - \mu_{max,AOB}$ S + K	- PAOB	TSS (mg/L)		<5
						[³ NH ₄ ¹ NH ₄][³ 0 ¹ 0,	AOB	135 (llg/L)		>
5	design aerobic SRT	SRTa	d	16	Note: [1]Table 7 total SRT 20 days			Total Nitrog	en (mg/L)	10
6	nitrification safety factor	SF	-	1.788 1.3-2.0	[2]Range			Total Thirds	cii (iiig/L)	10
7								Ammonia (r	ng/L)	<1.0
8	Heterotrophic biomass yield	Y _H	g _{VSS} /g _{bCOD}	0.45	[2] Table 8-14					
9	Nitrification biomass yield	Yn	g _{vss} /g _{tkn}	0.15	[2] Table 8-14			Total Phosp	norus (mg/L)	<1.0
C								01-10	(m - //)	-1
1	biodegradable COD	bCOD	mg/L	560	[2] Eq. 8-13, ≈1.6(BOD)			Oil and Grea	ise (mg/L)	<1
2								Faecal colife	rms	<10 per 100 m
3	heterotrophic decay coefficient @ Tmin	b _{H,Tmin}	g/(g*d)	0.0810677	= (0.12 g/(g*d))(1.04) ^(Tmin-20) , [2]Table 8-14			i accai coille	1113	~10 per 100 m
1	heterotrophic specific growth rate @Tmin		g/(g*d)	3.050095753	= (6.0 g/(g*d))(1.07) ^(Tmin-20) , [2]Table 8-14					0.2 ppm summ
	Halfvelocity constant	μ _m Kc		8	[2] Table 8-14, temperature invariant			Free Chlorin	e	
5		Ks	mg/L			$S = \frac{K_s[1 + b_{\rm H}({\rm SRT})}{[{\rm SRT}(\mu_m - b_{\rm H}) - $				0.0 ppm winter
	effluent biodegradable soluble COD	S	mg/L	0.395159304	[2] Eq. 7-46	$S = [SRT(\mu_m - b_m) -$	1]			
7	Diamagna dugting in the total in the		he ()	52 70251522						
3	Biomass production, heterotrophs + AOB	P _{x,bio}	kg _{vss} /d	52.79251523	[2] Eq. 8-20, with nitrification included assume NOx=0.8*TKN	$P_{X,\text{bio},\text{VSS}} = \frac{QY_{\text{H}}(S_o - S)}{1 + b_{\text{H}}(\text{SRT})}$	$(f_d)(b_{\rm H})QY_{\rm H}$	$(S_o - S)$ SF	CT OY	(NO_x)
)	nitrogen oxidised	NOx	mg/L	48.16224543	[2] Eq. 8-24	$P_{X,\text{bio,VSS}} = \frac{2 \text{ in } b}{1 + b} (\text{SPT})$	$+\frac{aa}{1+b}$	(SPT)	$-+\frac{-}{1+b}$	(SRT)
)						$1 + v_{\rm H}(\rm SRT)$	$1 \pm b$	H(SKI)	$1 + D_A$	OB(ORT)
	ITERATE AND CHECK									
	Biomass production, heterotrophs + AOB	$P_{X,bio}$, VSS		53.33190472	[2] Eq. 8-20					
	nitrogen oxidised	NOx	mg/L	48.00042858	[2] Eq. 8-24					
5	nonbiodegradable Volatile Suspended Solids	nbVSS	mg/L	80 60-100	municipal waste no primary treatment					
5										
	volatile sludge prouction	P _{x,vss}	kg _{vss} /d	85.33190472	[2] Eq. 8-20					
	Chemical sludge production	P _{X,TSS⁺CHEM}		25.78584259	See Phosphorus precipitation sheet					
)	sludge production inc. nbTSS + chem. sludge	P _{X,TSS}	kg _{tss} /d	150.5292599	[2] Eq. 8-21					
1	of the state of th	- X, ISS	. 6129 .							
) L	Peactor Mass (volatila)	D *\/	ka	1365.310476	[2] Eq. 7-56					
	Reactor Mass (volatile)	P _{X,VSS} *V	kg		[2] Eq. 7-56					
2	Reactor Mass (total solids)	P _{X,TSS} *V	kg	2408.468159	[2] Eq. 7-57					
ļ	Bioreactor Mixed Liquor SS conc.	MLSS	mg/L	8000 6,000-12,000	note [1]1.5.3 was 6000mg/L					
5	Bioreactor MLVSS	MLVSS	mg/L	4535.033509	=MLSS*P _{x,VSS} /P _{x,TSS}					
5	Aeration basin volume	Vo	m3	301.0585198	=(P _{X,TSS} *V)/MLSS					
	Hydraulic retention time	τ	h	18.06351119	=Vo/Q					
1										
7 8	Preaeration tank active biomass	Pxb	kg/d	43.85077177						


50				0.201210610					
59 60	Fraction active mass to TSS Active mass in anoxic	X _b	- mg/L	0.291310618 2330.484946	=Px,b/Px,TSS				
61		Λb	111 <u>6</u> / L	2330.404340					
62	Required effluent Nitrate concentration	Ne	mg/L	10	[3]TN 10mg/L effluent limit, assume NO3-N 6mg/L				
63	Required recycle rate for denitrification	RQ+IRQ	m3/hr	63.33404764	=Q*[N/Ne-1]				
64	amount of NO3-N fed to anoxic tank	NOx feed	kg/d	15.20017143					
65	Anoxic zone volume	Vanoxic	m3	140	start with 1/3 aerobic volume, check				
66	Food mass ratio	F/M _b	g/(g*d)	0.429095241 0.15-0.50					
67 68									
69									
	ermine SDNR								
71 if%ı	rbCOD =10%								
72		SDNRb		0.120006043	[2]Eq. 8-56, Table 8-22				
	rbCOD =50%								
74 75 Accu	merbCOD 10%	SDNRb		0.132935627	[2]Eq. 8-56, Table 8-22				
75 Assu 76									
77	Temperature adjusted SDNRb			0.092838797	= SDNRb*(1.026) ^(Tmin-20) , [2]				
78	Recycle rate adjusted SDNRb			0.105375012	[2] EQ.8-60	IR = 2	$SDNR_{adi} = SDNR_{IR1}$	$-0.0166 \ln(F/M_b) - 0.078$	(8–59)
79						IR = 3-4	3	$-0.029 \ln(F/M_b) - 0.012$	(8–60)
80	overall SDNR based on MLVSS		g NO3-N/g	0.054150621	=SDNRb(MLVSSb/MLVSS),[2]	IK = 3-4	$SDINK_{adj} - SDINK_{IR1}$	$= 0.029 \text{Im}(17 \text{M}_{\text{b}}) = 0.012$	(8-80)
81 82	nitrate reduction capactiy	NOr	kg/d	17.66760895	=V _{anoxic} *SDNR*Xb	where SDNR _{adj} =	= SDNR adjusted for th	he effect of internal recycle	
83	matereduction capacity		16/ U	17.00700033		SDNR _{IR1} =	= SDNR value at interr	nal recycle ratio $= 1$	
84	Compare with NOx feed					F/M _b =		ed on anoxic zone volume and act	ive biomass
85	amount of NO3-N fed to anoxic tank	NOx feed	kg/d	15.20017143	(copy from above)		concentration, g/g·d		
86									
87									
88 89									
	ck alkalinity								
91	influent alkalinity		mg/L as Ca	ac 250	[1]Table 2 median, need minimum				
92	alkalinity used		-	<mark>(342.7230601</mark>	=(7.14 g CaCO3/g NH4-N)*Nox [2]				
93	alkalinity produced		mg/L as Ca	a <mark>(135.66153</mark>	=(3.57 g CaCO3/g NOx)*(Nox-Ne) [2]				
94 95	Alkalinity to be added		mø/Las Ca	27.06153005	~70mg/L alkalinity required for pH stability				
96	Mass of alkalinity needed		kg/d	10.82461202	=Q*alkalinity to be added				
97			0, -						
98									
99 Aera				52 202 42 57			$\begin{bmatrix} D_f \end{bmatrix}$		
100 101	Biomass production, heterotrophs only Oxygen without denitrification	$P_{X,bio}$,VSS		52.3824867 9.883482859	[2] Eq. 8-20	$C^*_{\infty,20} = C^*_{S20}$	$\left[1 + d_e\left(\frac{D_f}{P_a}\right)\right]$		
101	Oxygen credit for denitrification		kg/h kg/h	1.811353763		P = standard p	ressure at sea level, (760 n	nm) $(10.33 m)$	
103	Net oxygen required	Ro	kg/h	8.072129096		u 1	t the plant site based on ele		
104							iffusers in basin, m or ft		
105	Average diffuser submergence depth	Df	m	3.5	4m deep tank assumed 0.5m freeboard		DO in basin, mg/L		
106	diffuser fouling factor alpha	Fα	-	0.9	[1] Table 8 [1]1.6.3		asin temperature, °C correction factor; may var	v from 0.25 - 0.45 (0.40)	
107 108	beta	ß	-	0.45 0.95	[1]1.6.3	u _e mu depui	concerton nector, may var		
109	saturated DO @sea level & 20°C diffused aeration	P C* _{∞,20}	mg/L	10.49793804	[2]US EPA, see image:	Table 8: Summary	of Aeration Design Verific	ation	
110	altitude		m AHD	160	maps, note. [1] assumed 100m				-
111	Altitude pressure correction	Pb/Pa	-	0.99820983	[2]Appendix B	Parameter	ion blower	Value	-
112	Standard Oxygen Transfer Rate	SOTR	kg/h	33.34158304	[2] see image:	No. bioreactor aerati Peak diurnal airflow		1 duty, 1 standby 312 Nm ³ /hr	-
113 114	Peaking factor SOTE per depth		- %/m	2 6.2	[1]1.6.3 Assumed, need data from EDI	Each bioreactor blo	ower maximum capacity	300 Nm ³ /hr (intake) @ 60 kPa relief	1
114	Standard Oxygen Transfer Efficiency	SOTE	%	21.7		required Blower turn-down		pressure To at least 40% of maximum via VSD	-
116	Required oxygen supply rate		kg/h	207 2056062	=SOTR*F/SOTE		diffusers per basin		1
117	Biological Blower capacity required	Q _N	Nm3/h	1027.669189		No. drop-legs		2 (removable laterals)]
118	Summer air temperature		°C	50	based on sydney water spec M31.1				
119 120	Diffuser pressure loss		kPa	6	Assumed need data from EDI	(0	TR_f C^*_{-20}		
120	Diffuser pressure loss Pipework pressure loss		кРа kPa	2	2 kPa max per sydney water spec M30.2 1	$SOTR = \left(- \right)$	$\frac{1}{\sqrt{E}} \left \left\langle \frac{1}{\Gamma C^* (P)} \right\rangle \right $	(1.024^{20-T})	
141	Hydrostatic pressure		kPa	36.05175		\ u	$\beta \frac{C_{\text{st}}}{C^*} \left(\frac{T_b}{D}\right) (C_{\circ}^*)$	$(c_{20}) - C_{L}$	
121 122	Blower outlet pressure required		kPa	48.456925	minimum $\left[\frac{\gamma-1}{\gamma} \right]$	0	$(\lfloor C_{s20} (P_a) \rfloor$		
	blower outlet pressure required			20 5	based on isentropic efficiency 70% = $C_{m} \left[\left(\frac{-2}{2} \right)^{r} * T_{1} - \frac{1}{2} \right]$	$T_1 = 1/n_{10} * \rho_N * \frac{Q}{Q}$	- 11		
122 123 124	biology blower approximate power required		kW	20.5	$p_p = p_p = p_p = p_p$	-1 -/ 13 - 14 36	500		
122 123 124 125	biology blower approximate power required			20.5	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	-1 -7 m3 FN 36	500		
122 123 124 125 126	biology blower approximate power required Membrane aeration peak		kW m3/h/row -	20.5 7 4.3 48	[3] Low flux mode $3^* \downarrow E_1 f_0 (16 rows)$	-1] -7 m 36	500		
122 123 124 125 126 127	biology blower approximate power required Membrane aeration peak number of rows	Q _N		20.5 7 4.3 48 206.4	[3] Low flux mode 3^* LE-16 (16 rows)		600		
122 123 124 125 126	biology blower approximate power required Membrane aeration peak	Q _N	m3/h/row -	20.5 7 4.3 48 206.4 36	based on sydney water spec M31.1 Assumed, need data from EDI 2 kPa max per sydney water spec M30.2.1 minimum based on isentropic efficiency 70%, $= C_p \left[\left(\frac{P_2}{P_a} \right)^{\frac{\gamma-1}{\gamma}} * T_1 - T_1 \right) \right]$ [3] Low flux mode 3* LE-16 (16 rows) [3] 33kPa +2kPa distribution		600		
122 123 124 125 126 127 128	biology blower approximate power required Membrane aeration peak number of rows Membrane Air scour required	Q _N	m3/h/row - Nm3/h				600		


2.


 REFERENCES


 1.
 CLARKES LANE MBR SEWAGE TREATMENT PLANT ASSESSMENT. Rev. B 15/12/22 AKVOTEK


 2.
 Wastewater Engineering 5th ed. Metcalf & Eddy

Equipment list

Project Name:	Clarks Lane MBR	Revision	Created:	RN	C
Location:	Wangaratta, VIC	Reference P&ID:	Date:	12/9/2023	
NOTE: GREY = CONTRACTOR SCOP	PE				

MAJOR EQUIPMENT

	Item	Tag No.	Description	Quantity	Manufacturer	Model	Material (Wetted)	Pov
	1	CS201	Capacity screen	2	CSL Wastewater solution	SFC/T	316 SS	
	2	CS202						
Γ	3	MF301	Microfiltration membrane unit	3	Kovalus	Pulsion LE16 membrane modules		
Γ	4	MF302						
	5	MF303						
	6	UV401	UV light disinfection		UV Guard	S440		

PUMPS

										_
tem	Tag No.	Description	Manufacturer	Model	Duty	Material (Wetted)	Power (kW)	Voltage	VSD/DOL	
1	P101	Feed pump from sewer tank								
2	P201	Bioreactor feed pump standby	EBARA	80 DF 51.5	12L/s @ 5m	316SS	1.2			
3	P202	Bioreactor feed pump	EBARA	80 DF 51.5	12L/s @ 5m	316SS	1.2			
4	P301	MBR feed pump standby	EBARA	GSO	48 L/s @ 1m	316SS	5.5	415	VSD	
5	P302	MBR feed pump	EBARA	GSO	48 L/s @ 1m	316SS	5.5			
6	P303	MBR permeate pump for MF301	Volesang		6.148 l/s / 5.25 m	316SS	0.55			Double direction pur
7	P304	MBR permeate pump for MF302	Volesang		6.148 l/s / 5.25 m	316SS	0.55			
8	P305	MBR permeate pump for MF303	Volesang		6.148 l/s / 5.25 m	316SS	0.55			Progessing cavity pur
	P306	Waste discharge pump standby	Mono		4 l/s / 7 m	316SS	0.55			
10	P307	Waste discharge pump	Mono		4 l/s / 7 m	316SS	0.55			
13	P401	Permeate feed to UV401	EBARA	3M4 65-160/2.2	10.04 l/s / 10.08 m	316SS	2.2			
14	P402	Washwater feed pump	Davey							
15	P403	Recycled water feed pump to storage lagoon								
16	PP401	Pressure pump								
17	P501	Dosing pump for T501	Trility	Granfos DDA						
18	P502	Stantby dosing pump for T501	Trility	Granfos DDA						
19	P503	Dosing pump for T502	Trility	Granfos DDA						
20	P504	Stantby dosing pump for T502	Trility	Granfos DDA						1
21	P505	Dosing pump for T503 (To UV Disinfection)	Trility	Granfos DDA						1
22	P506	Stantby dosing pump for T503 (To UV Disinfection)	Trility	Granfos DDA						1
23	P507	Dosing pump for T503 (To MBR CEB)	Trility	Granfos DDA						1
24	P508	Stantby dosing pump for T503 (To MBR CEB)	Trility	Granfos DDA						1
25	P509	Dosing pump for T504	Trility	Granfos DDA						1
26	P510	Stantby dosing pump for T504	Trility	Granfos DDA						1
27	P511	Dosing pump for T505	Trility	Granfos DDA						1
28	P512	Stantby dosing pump for T505	Trility	Granfos DDA						1
TANKS										7
Item	Tag No.	Description	Manufacturer	Model	Capacity (kL)	Material (Wetted)	Physical Size (m)			_
1	T201	Odour control tank	Aquatec							
2	T301	Anoxic tank (MBR)	Kingspan		100	Glass fused steel				-
3	T302	Aeration tank (MBR)	Kingspan		200	Glass fused steel				-
4	T401	Permeate tank			30	PE				170
5	T402	Chlorine contact tank			150	PE				
6	T501	Sodium hydroxide tank	Trility	+	1	bunded PE		<u> </u>		٦
7	T502	Alum tank	Trility	+	1	bunded PE		<u> </u>		-
8	T503	Sodium hypochlorite tank	Trility		1	builded PE				-
9	T504	Critic acid tank	Trility		1	builded PE				-
			THILLY	1	1-	builded FE	1	1 1		_
NSIKUM	ENIS			- 1						-
	T = 1	Description		1	Denne Comple		Material		Process	

Item	Tag No.	Description	Manufacturer	Model	Power Supply	Output	Material (Wetted)	Range	Process Connection
1	LSH201	Level switch high for CS201	Endress & Hauser	Ultrasonic					
2	LSH202	Level switch high for CS202	Endress & Hauser	Ultrasonic					
3	PI201	Pressure indicator for wastewater feed to MBR	Endress & Hauser						
4	TT301	Temperature transmitter for T302	Endress & Hauser						
5	AT301	Analysis transmitter for dissolve oxygen for T302	Hach						
6	AT302	Analysis transmitter for Mixed liquor suspended solid for T302	Endress & Hauser						
7	LT301	Level transmitter for T302	Endress & Hauser						
8	PI301	Pressue indicator for MBR feed to MF unit	Endress & Hauser						
9	PI302	Peessure indicator for waste outlet to sewer pit	Endress & Hauser						
10	FIT301	Flow indicator transmitter for permeate	Endress & Hauser	Magflow					
11	FIT302	Flow indicator transmitter for waste outlet	Endress & Hauser	Magflow					
12	LT401	Level transmitter for T401	Endress & Hauser						
13	LT402	Level transmitter for T402	Endress & Hauser						

Checked:	
Date:	
Power (kW)	Physical Size
	(m)

14	LT403	Level transmitter for T403	Endress & Hauser			
15	PS401	Pressure switch for P402	Endress & Hauser			
16	AT401	Analysis transmitter for oxidation reducion potential for recycle water	Hach			
17	LSL501	Level switch low for T 501	Endress & Hauser			
18	LSL502	Level switch low for T 502	Endress & Hauser			
19	LSL503	Level switch low for T 503	Endress & Hauser			
20	LSL504	Level switch low for T 504	Endress & Hauser			
21	LSL505	Level switch low for T 505	Endress & Hauser			
22	LSLL501	Level switch low-low for T 501	Endress & Hauser			
23	LSLL502	Level switch low-low for T 502	Endress & Hauser			
24	LSLL503	Level switch low-low for T 503	Endress & Hauser			
25	LSLL504	Level switch low-low for T 504	Endress & Hauser			
26	LSLL505	Level switch low-low for T 505	Endress & Hauser			

VALVES

Item	Tag No.	Description	Manufacturer	Туре	Actuation	Material (Wetted)	Pre rati
1	MV101	Sewer outlet valve (for isolation)			Manual	UPVC	16
	AV101	Sewer outlet valve			Pneumatic	UPVC	16
	MV102	Waste sludge inlet valve (for isolation)			Manual	UPVC	16
4	AV102 MV201	Waste sludge inlet valve Sewer inlet to CS201 (for isolation)		Ball	Pneumatic Manual	UPVC UPVC	16 16
	AV201	Sewer inlet to CS 201		Ball	Pneumatic	UPVC	16
	MV202	Wash water inlet to CS201		Ball	Manual	UPVC	16
8	MV203	CS201 outlet (for isolation)		Ball	Manual	UPVC	16
	AV202	CS201 outlet		Ball	Pneumatic	UPVC	16
10	MV204 AV203	Sewer inlet to CS202 (for isolation)		Ball	Manual	UPVC	16 16
	MV205	Sewer inlet to CS 202 Wash water inlet to CS202		Ball Ball	Pneumatic Manual	UPVC UPVC	16
13	MV205	CS202 outlet		Ball	Manual	UPVC	16
	AV204	CS202 outlet (for isolation)		Ball	Pneumatic	UPVC	16
15	CV201	Check valve for Sodium hydroxide dosing		Check	Manual	UPVC	16
	MV207	Sodium hydroxide dosing valve		Ball	Pneumatic	UPVC	16
17	MV208	Standby feed valve for P201		Ball	Manual	UPVC	16
18	CV202	Standby check valve for P201		Check	Manual	UPVC	16
19	MV210	Standby outlet valve for P201		Butterfly	Manual	UPVC	16
20	MV209	Feed valve for P202		Ball	Manual	UPVC	16
21	CV203	Check valve for P202		Check	Manual	UPVC	16
22	MV211	Outlet valve for P201		Butterfly	Manual	UPVC	16
23	MV212	Odour treatment outlet valve		Ball	Pneumatic	UPVC	16
24	CV301	Check valve for Alum dosing		Check	Manual	UPVC	16
25	MV301	Alum dosing valve		Ball	Pneumatic	UPVC	16
							-
26	MV302	Air aeration inlet valve 1		Manual	Manual	UPVC	16
27	MV303	Air aeration inlet valve 2		Manual	Manual	UPVC	16
28	MV304	Standby MBR feed inlet to P301		Manual	Manual	UPVC	16
29	MV305	MRB feed inlet to P302		Manual	Manual	UPVC	16
30	CV302	Standby check valve for P301		Check	Manual	UPVC	16
31	CV303	Check valve for P302		Check	Manual	UPVC	16
32	MV306	Standby outlet valve for P301		Manual	Manual	UPVC	16
33	MV307	Outlet valve for P302		Manual	Manual	UPVC	16
34	AV301	Feed valve for MF301		Pneumatic	Pneumatic	UPVC	16
35	AV302	Feed valve for MF302		Pneumatic	Pneumatic	UPVC	16
36	AV303	Feed valve for MF303		Pneumatic	Pneumatic	UPVC	16
37	CV304	Check valve for Citric acid dosing		Check	Manual	UPVC	16
							-
38	CV305	Check valve for hypochlorite dosing		Check	Manual	UPVC	16
39	MV308	Citric dosing valve		Ball	Pneumatic	UPVC	16
40	MV309	Hychloride dosing valve		Ball	Pneumatic	UPVC	16
41	AV304	Waste valve from MF301, MF302 and MF303		Pneumatic	Pneumatic	UPVC	16
42	MV310	Standby waste inlet valve for P306		Manual	Manual	UPVC	16
43	MV311	Waste inlet valve for P307		Manual	Manual	UPVC	16
44	CV306	Standby check valve for P306		Check	Manual	UPVC	16
45	CV307	Check valve for P 307		Check	Manual	UPVC	16
46	MV312	Standby waste outlet valve for P306		Manual	Manual	UPVC	16
	MV313	Waste outlet valve for P307		Manual	Manual	UPVC	16
	MV401	Feed valve for UV401	1	Manual	Manual	UPVC	16
	MV401	Outlet valve for UV401		Manual	Manual	UPVC	16
			<u> </u>				-
	MV403	Standby valve for UV401		Manual	Manual	UPVC	16
	MV404	Sodium hydroxide dosing valve	l	Manual	Manual	UPVC	16
52	MV405	SMBS dosing valve		Manual	Manual	UPVC	16
53	CV401	Check valve for Sodium hydroxide dosing		Check	Manual	UPVC	16
54	CV402	Check valve for SMBS dosing		Check	Manual	UPVC	16

	D
Pressure	Process
ating (bar)	Connection
16 16	
16	
6	
.6	
6	
6	
6	
6	
6	
6	
6	
6	
.6	
6	
6	
6	
.6	
6	
.6	
6	
6	
6	
6	
6	
.6	
.6	
16	
.6	
6	
.6	
.6	
.6	
6	
.6	
.6	
6	
6	
6	
.6	
6	
6	
6	
6	
6	
.6	
16	
16	
6	
6	
6	
6	

						110.40	4.6	
55		Discharge valve from T402 to T403		Pneumatic	Pneumatic	UPVC	16	
56		Dosing valve for T501	Trility					
57		Standby dosing valve for T501	Trility					
58	MV503	Isolation valve for T501	Trility					
59		Standby Isolation valve for T501	Trility					
60	MV505	Dosing valve for T502	Trility					
61	MV506	Standby dosing valve for T502	Trility					
62	MV507	Isolation valve for T502	Trility					
63	MV508	Standby Isolation valve for T502	Trility					
64	MV509	Dosing valve for T503 (For UV disinfection)	Trility					
65	MV510	Standby dosing valve for T503 (For UV disinfection)	Trility					
66	MV511	Isolation valve for T503 (For UV disinfection)	Trility					
67	MV512	Standby Isolation valve for T503 (For UV disinfection)	Trility					
68	MV513	Dosing valve for T503 (For MBR CEB)	Trility					
69	MV514	Standby dosing valve for T503 (For MBR CEB)	Trility					
70	MV515	Isolation valve for T503 (For MBR CEB)	Trility					
71	MV516	Standby Isolation valve for T503 (For MBR CEB)	Trility					
72	MV517	Dosing valve for T504	Trility					
73	MV518	Standby dosing valve for T504	Trility					
74	MV519	Isolation valve for T504	Trility					
75	MV520	Standby Isolation valve for T504	Trility					
76	MV521	Dosing valve for T505	Trility					
77	MV522	Standby dosing valve for T505	Trility					
78		Isolation valve for T505	Trility					
79	MV524	Standby Isolation valve for T505	Trility					
OTHERS	-				•		-	
Item	Tag No.	Description	Quantity	Manufacturer	Туре	Material (Wetted)		
1	AB201	Air blower for odour control	2	Aquatec	Fan			
2	AB202							
3	AB301	Biological blowers for MBR	2	Atlas Copco	PD, Root-type blower			
4	AB302							
5	AB303	Air scour blowers	3	Esam	Side Channe			
6	AB304							

Beyond Scope